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Abstract

This paper presents a new discrete-time sliding mode controller to alleviate undesirable chattering in vibration control of

a flexible beam structure. A smart beam featuring a piezoelectric film is devised and its governing equation of motion is

derived. A discrete-time sliding mode controller which consists of discontinuous part and equivalent part is then designed

by considering the separation principle. By doing this, undesirable chattering of the beam structure can be attenuated in

the settled phase. The proposed controller is experimentally realized, and both transient and forced vibration control

responses are evaluated in time domain.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, advanced lightweight structural systems have been achieved in various research fields with the aid
of high technologies in computer and material sciences. Especially, the emergence of so-called smart materials
has accelerated successful development of the advanced structural systems [1,2]. So far, potential smart
materials include electro-rheological fluids, magneto-rheological fluids, shape memory alloys, piezoelectric
materials, and optical fibers. Most flexible structures featuring the smart materials can be easily subjected to
parameter variations and disturbances [3,4]. Hence, these structural systems require robust control algorithms
such as sliding mode control (SMC). The sliding mode that is the principle mode in the variable structure
control system is obtained by appropriate discontinuous control laws. In the sliding mode, the system has
robust property to the parameter variations and external disturbances [5–7].

In general, the SMC has been designed based on the continuous-time system. Its implementation by a digital
computer, however, requires certain sampling processes. It may be very difficult that the sampling processes
are exactly realized in the continuous-time sliding mode control (CSMC) system. In other words, since the
sampling processes bring not only the chattering of the control input along the pre-designed sliding surfaces
but also possible instability of the control system, the practical implementation of the CSMC may not be
effective. This leads to the study of the discrete-time sliding mode control (DSMC) system. The main
discrepancy between the DSMC and the CSMC is the determination of the existence condition of the sliding
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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mode. Sarpturk et al. [8] have presented the existence condition to determine a stable sliding mode controller
for the discrete-time system. This condition requires a controller gain to have upper and lower bounds. But if
the system has uncertainties, there exists a region in the neighborhood of the sliding surface where the
feedback gain cannot be defined. This region is called a sliding region. Furuta and Pan [9] have suggested
adjustable equivalent controller to attenuate the sensitiveness to the uncertainties. However, this solution
makes the sliding region enlarge. This may cause adverse chattering in the vibration control of flexible
structures.

In this study, a new discrete-time sliding mode controller is proposed in order to alleviate undesirable
chattering in vibration control of a flexible smart beam structure featuring a piezoelectric film actuator
(piezofilm actuator in short). After deriving the governing equation of motion for the smart beam structure, a
discrete-time control model with system uncertainties is constructed in a state space. A stable sliding surface is
then designed followed by the formulation of a discrete-time sliding mode controller which consists of a
discontinuous part and an equivalent part. In the design of the equivalent part, so called the separation
principle is introduced to achieve faster reaching to the sliding surface without extension of the sliding region
in which undesirable vibration chattering may be arisen. The controller is experimentally implemented and
vibration control responses of the beam structure subjected to transient and forced vibrations are evaluated in
time domain.
2. Formulation of control model

Consider a smart flexible cantilevered beam as shown in Fig. 1, in which the piezofilm is perfectly bonded on
the upper surface of the host structure as an actuator. Upon applying a voltage, V ðtÞ to the piezofilm actuator,
a resultant strain ð�lÞ is produced in the beam as follows [1]:

�l ¼
E2t2d31V ðtÞ

t2ðE1t1 þ E2t2Þ
. (1)

Here E1 and E2 are Young’s modulus of the beam and the piezofilm, respectively, and d31 denotes the
piezoelectric strain constant. From the resultant strain of Eq. (1), the bending moment ðMÞ in the smart beam
is obtained as follows [10]:

M ¼ � d31 �
t1 þ t2

2
�

E1E2t1b

E1t1 þ E2t2
� V ðtÞ

¼ c � V ðtÞ, ð2Þ

where c is a constant dependent on mechanical properties and geometry of the host structure and the
piezofilm. By employing energy equations and Hamilton’s principle, the governing equation of motion and
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Fig. 1. Smart beam structure featuring the piezofilm actuator.
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associated boundary conditions are obtained by

EIyðinÞðx; tÞ þ rA €yðx; tÞ ¼ 0, (3)

yð0; tÞ ¼ y0ð0; tÞ ¼ 0; Ely00ðL; tÞ ¼ �cV ðtÞ; Ely000ðL; tÞ ¼ mT €yðL; tÞ. (4)

Here EI is the effective bending stiffness of the structure, rA is the mass per length of the structure, and mT

denotes the tip mass. By using the assumed-mode method the displacement (or deflection) variable, yðx; tÞ can
be expressed as

yðx; tÞ ¼
X1
i¼1

fiðxÞ � qiðtÞ. (5)

The space-dependent function fiðxÞ is the eigenfunction of the ith mode, and the time-dependent function qiðtÞ

is the generalized coordinate of the system. After applying Lagrange’s equation, an infinite set of ordinary
differential equations which are decoupled from each other may be obtained. Upon retaining finite number of
control modes (m mode), a reduced dynamic model is obtained in the state space representation as follows:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ fðtÞ,

yðtÞ ¼ ExðtÞ, ð6Þ

where

x ¼ ½q1 _q1 q2 _q2 � � � qm _qm�
T ¼ ½x1 x2 � � � x2m�

T,

uðtÞ ¼ V ðtÞ; fðtÞ ¼ ½0 f 1ðtÞ 0 f 2ðtÞ � � � 0 f mðtÞ�
T,

A ¼

0 1

�o2
1 �2z1o1 0

. .
.

0 0 1

�o2
m �2zmom

2
6666666664

3
7777777775
,

B ¼ �
c

It

0

Z L

0

q2f1

qx2
dx 0

Z L

0

q2f2

qx2
dx � � � 0

Z L

0

q2fm

qx2
dx

� �T
,

E ¼ ½f1ðLÞ 0 f2ðLÞ0 � � � fmðLÞ 0�.

In Eq. (6), f iðtÞ is unknown but bounded external force to disturb the ith mode. oi and zi denote the natural
frequency and the damping ratio of the ith mode, respectively, and I t is the generalized mass.

From the lack of exact knowledge of model parameters, a possible variation of the parameters for the
natural frequency and the damping ratio can be expressed as follows:

oi ¼ oi;0 þ doiðtÞ; zi ¼ zi;0 þ dziðtÞ. (7)

Here oi;0 and zi;0 are the nominal natural frequency and the damping ratio of the ith mode, respectively. doiðtÞ

and dziðtÞ are corresponding possible deviations. Now, substituting Eq. (7) into Eq. (6) yields the following
uncertain dynamic model:

_xðtÞ ¼ ðA0 þ DAðtÞÞxðtÞ þ BuðtÞ þ fðtÞ

¼ AðtÞxðtÞ þ BuðtÞ þ fðtÞ. ð8Þ

By using the zero-order-hold (ZOH) method, the continuous-time system (8) can be written by the following
discrete-time version:

xðk þ 1Þ ¼ UðkÞxðkÞ þ CðkÞuðkÞ þ dðkÞ, (9)
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where

UðkÞ ¼ exp

Z tkþ1

tk

AðtÞdt
� �

ffi exp A
tk þ tkþ1

2

� �
T

� �
,

CðkÞ ¼
Z tkþ1

tk

exp

Z tkþ1

t
AðaÞda

� �
BðtÞdtffi

Z T

0

exp A
tk þ tkþ1

2

� �
t

� �
dtB

tk þ tkþ1

2

� �
,

dðkÞ ffi

Z T

0

exp A
tk þ tkþ1

2

� �
t

� �
fððk þ 1ÞT � tÞdt.

In the above, T is a sampling time and k is a sampling number. We can rewrite Eq. (9) using the nominal part
and the uncertain part as follows:

xðk þ 1Þ ¼ ðU0 þ DUÞxðkÞ þ ðC0 þ DCÞuðkÞ þ dðkÞ, (10)

where

U0 ¼

f11;0 � � � f1n;0

..

.

fn1;0 � � � fnn;0

2
6664

3
7775; C0 ¼

g1;0

..

.

gn;0

2
664

3
775,

fij;0 ¼
fij;min þ fij;max

2
; gi;0 ¼

gi;min þ gi;max

2
; i; j ¼ 1; . . . ; nð¼ 2mÞ,

DU ¼

df11ðkÞ � � � df1nðkÞ

..

.

dfn1ðkÞ . . . dfnnðkÞ

2
664

3
775; DC ¼

dg1ðkÞ

..

.

dgnðkÞ

2
664

3
775; dðkÞ ¼

d1ðkÞ

..

.

dnðkÞ

2
664

3
775.

And maximum parameter variations and disturbances can be defined as follows:

f̄ij � maxðjdfijðkÞjÞ ¼ fij;max � fij;0,

ḡi � maxðjdgiðkÞjÞ ¼ gi;max � gi;0,

d̄ i � maxðjdiðkÞjÞ. ð11Þ

3. Controller design

The control purpose is to enforce the deflection of the flexible smart beam to the zero without undesirable
chattering in a settled phase. We firstly set a sliding surface in the state space as follows:

sðkÞ ¼ CxðkÞ, (12)

where, C ¼ ½c1 � � � cn� is surface gradient vector. Then, an equivalent controller for the nominal part ðU0;C0Þ of
system (10) can be established such that the state variables rest on the surface of sðk þ 1Þ ¼ sðkÞ for all k, given
by

CðU0 xðkÞ þ C0uðkÞÞ ¼ CxðkÞ.

Thus,

ueqðkÞ ¼ Feq xðkÞ ¼ �ðCC0Þ
�1
ðCU0 � CÞxðkÞ. (13)
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In this manner, the motion of the nominal system is subjected to the following sliding mode equation:

xðk þ 1Þ ¼ ðU0 þ C0 FeqÞxðkÞ ¼ Ueq xðkÞ,

sðkÞ ¼ CxðkÞ ¼ 0. ð14Þ

Here, one eigenvalue of Ueq is 1 and the others ðn� 1Þ become the predetermined desired eigenvalues.
Consequently, the closed-loop nominal system with controller (13) is marginally stable in the sliding mode. On
the other hand, so-called b-equivalent controller is determined from the relation of sðk þ 1Þ ¼ bsðkÞ as follows:

CðU0 xðkÞ þ C0uðkÞÞ ¼ bCxðkÞ; 0pbo1.

This yields the following controller:

ueq;bðkÞ ¼ Feq;b xðkÞ ¼ �ðCC0Þ
�1
ðCU0 � bCÞxðkÞ. (15)

The closed-loop nominal system with the b-equivalent controller (15) is asymptotically stable inside the sliding
region, since b itself is one of the closed-loop eigenvalues and it is less than 1.

As stated in Section 1, we can reduce the sliding region using the equivalent controller (13), but the system
sensitivity to the uncertainties increases. On the other hand, using the b-equivalent controller (15), we can
attenuate the sensitivity with a tradeoff of the large sliding region. In order to keep only advantage of each
equivalent controller, in this study we propose an equivalent controller separation principle: inside the sliding
region, we activate only the b-equivalent controller (15), while controller (13) is activated outside the sliding
region by incorporating a discontinuous controller to be designed. Since controller (13) or (15) is designed on
the basis of nominal part, the stability of the uncertain system (10) cannot be guaranteed. Thus, in order to
guarantee the stability a discontinuous controller should be designed so that the following sliding mode
conditions are satisfied [8]:

ðsðk þ 1Þ � sðkÞÞ sgnðsðkÞÞo0,

ðsðk þ 1Þ þ sðkÞÞ sgnðsðkÞÞ40. ð16Þ

Before designing the discontinuous controller, we assume that CðC0 þ DCÞ is non-singular for all k. This
assumption can be then expressed by

Xn

i¼1

cigi;0

�����
�����4
Xn

i¼1

jciḡij. (17)

Now, we claim that the state trajectory of the uncertain system (10) converges robustly into the inside of the
sliding region from the outside of the sliding region, if the equivalent controller is augmented with the
discontinuous controller given by

udðkÞ ¼ �hðkÞ sgnðCC0 sðkÞÞ
Xn

i¼1

jxiðkÞj, (18)

where

hsðkÞohðkÞohcðkÞ: outside the sliding region;

hðkÞ ¼ 0: inside the sliding region;

(

hsðkÞ ¼
supðH2ðkÞÞ

infðH1ðkÞÞ
; hcðkÞ ¼

2jsðkÞj � supðH2ðkÞÞ

supðH1ðkÞÞ
.

In the above equation, infðH1ðkÞÞ, supðH1ðkÞÞ and supðH2ðkÞÞ are defined by

infðH1ðkÞÞ � inf CðC0 þ DCÞ
�� ��Xn

i¼1

xiðkÞ
�� �� !

¼ infðjCðC0 þ DCÞjÞ
Xn

i¼1

jxiðkÞj

¼
Xn

i¼1

cigi;0

�����
������
Xn

i¼1

jci ḡij

 !Xn

i¼1

jxiðkÞj,
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Fig. 2. Separation principle for the equivalent control action.
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supðH1ðkÞÞ � sup CðC0 þ DCÞ
�� ��Xn

i¼1

jxiðkÞj

 !
¼ supðjCðC0 þ DCÞjÞ

Xn

i¼1

jxiðkÞj

¼
Xn

i¼1

cigi;0

�����
�����þ
Xn

i¼1

jci ḡij

 !Xn

i¼1

jxiðkÞj,

supðH2ðkÞÞ � supðCðDUxðkÞ þ DCueq þ dðkÞÞÞ

¼ sup
Xn

i¼1

Xn

j¼1

cidfijðkÞxjðkÞ þ
Xn

i¼1

Xn

j¼1

cidgiðkÞueq þ
Xn

i¼1

cidiðkÞ

 !

¼
Xn

i¼1

Xn

j¼1

jcif̄ijxjðkÞj þ jueqðkÞj
Xn

i¼1

jciḡij þ
Xn

i¼1

jcid̄ ij.

By substituting the controller ðuðkÞ ¼ ueqðkÞ þ udðkÞÞ into the uncertain system (10) the sliding mode
conditions (16) are easily satisfied.

Fig. 2 presents the sliding region of control action. It is evident from this figure that only the b-equivalent
controller (15) is activated inside the sliding region (hs4hc), while the controllers (13) and (18) are activated
outside the sliding region (hc4hs). As stated earlier, this equivalent controller separation principle provides
the attenuation of vibration chattering in a settled phase and also the enhancement of robustness to the system
uncertainties.

4. Experimental results

In order to demonstrate the effectiveness of the proposed control methodology an experimental apparatus is
established as shown in Fig. 3. The information of the tip deflection measured from a non-contacting
displacement sensor (proximitor) is fed back to the micro-processor through A/D converter. Depending on the
information of the tip deflection and sampling time, the tip velocity is calculated. Using these variables,
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control input voltage is determined in the micro-processor by means of the proposed control algorithm. The
control voltage of the micro-processor is then applied to the piezofilm actuator through D/A converter and
high voltage amplifier which has a gain of 1000. The dimensional and material specifications of the composite
Fig. 3. Experimental setup for vibration control.
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Fig. 4. Transient vibration control responses: (a) w/o the separation principle; (b) with the separation principle.
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Fig. 5. Forced vibration control responses: (a) w/o the separation principle; (b) with the separation principle.
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beam and the piezofilm used in this study are given as follows:

E1 ¼ 6:4GPa; t1 ¼ 0:65mm; b ¼ 26:6mm; r1 ¼ 1865 kg=m3,

L ¼ 170mm; E2 ¼ 2GPa; t2 ¼ 0:11mm; r2 ¼ 1780 kg=m3

and d31 ¼ 23� 10�13ðm=mÞ ðV=mÞ. Using these values, the first mode natural frequency of the structure is
11:8Hz without the tip mass and 7.85Hz with 2:0 g of the tip mass which is about 30% of the beam mass.
Hence, the frequency change due to the tip mass can be considered as the parameter variation. In addition, we
assume the damping ratio has parameter variation with 20% of the nominal value of 0.007. The desired
eigenvalue is chosen as 0:5 for the sliding surface design and the system is sampled with the sampling time of
0.01 s. It is noted that in this experiment the first vibration mode is considered as dominant mode to be
controlled.

Fig. 4 presents the measured transient vibration control responses. It is clearly observed that the imposed
transient vibration is perfectly controlled in both the proposed and the conventional cases. In the transient
vibration control, the effectiveness of the proposed equivalent controller separation principle is not prominent.
This implies that the conventional method is enough to effectively control the transient vibration in the
absence of the external disturbance. Fig. 5 presents the measured forced vibration control responses with the
applied control voltages. We can clearly observe that the controller associated with the proposed equivalent
controller separation principle considerably improves the system responses by attenuating the chattering of
the control input and the tip deflection as well. The large chattering, in the conventional case arises from the
excessive supply of the control input voltage in the settled phase. This is due to that the sliding mode motion
occurs on the sliding region, not inside the sliding region. The effectiveness of the proposed control



ARTICLE IN PRESS

-8

-4

0

4

8

0 8

D
is

tu
rb

an
ce

Time [sec]
4 6 102

-3.0

-1.5

0.0

1.5

3.0

0 8

T
ip

 d
ef

le
ct

io
n 

[m
m

]

Time [sec] 
4 6 102

open-loop

-8

-4

0

4

8

0 8

T
ip

 d
ef

le
ct

io
n

Time [sec]
4 6 102

closed-loop

-500

-250

0

250

500

0 8

In
pu

t v
ol

ta
ge

 [V
]

Time [sec]
4 6 102

Fig. 6. Random vibration control responses with the separation principle.
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methodology can be also verified in the random vibration as shown in Fig. 6. The imposed random vibration is
well suppressed without exhibiting large chattering.

5. Concluding remarks

In this study, a new discrete-time sliding mode controller was formulated to attenuate the chattering of the
vibration and also to achieve the robustness to the system uncertainties. In the design of the controller, an
equivalent controller separation principle was employed for faster reaching to the sliding without extension of
the sliding region. It has been demonstrated through experiment that the proposed controller furnishes
favorable control responses such as significant reduction of the chattering, while maintaining the robustness to
the parameter uncertainties. Especially, in the forced vibration control case, the equivalent controller
separation principle was very effective. It is finally remarked that for the application of the proposed control
system to more realistic systems, the control system may be integrated with electronic-data-processing
function on a single integrated circuit chip.
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